3.313 \(\int \frac{(e \cos (c+d x))^{9/2}}{(a+a \sin (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=261 \[ \frac{7 e^3 (e \cos (c+d x))^{3/2}}{4 a^2 d \sqrt{a \sin (c+d x)+a}}+\frac{21 e^{9/2} \sqrt{\cos (c+d x)+1} \sqrt{a \sin (c+d x)+a} \tan ^{-1}\left (\frac{\sqrt{e} \sin (c+d x)}{\sqrt{\cos (c+d x)+1} \sqrt{e \cos (c+d x)}}\right )}{4 d \left (a^3 \sin (c+d x)+a^3 \cos (c+d x)+a^3\right )}+\frac{21 e^{9/2} \sqrt{\cos (c+d x)+1} \sqrt{a \sin (c+d x)+a} \sinh ^{-1}\left (\frac{\sqrt{e \cos (c+d x)}}{\sqrt{e}}\right )}{4 d \left (a^3 \sin (c+d x)+a^3 \cos (c+d x)+a^3\right )}+\frac{e (e \cos (c+d x))^{7/2}}{2 a d (a \sin (c+d x)+a)^{3/2}} \]

[Out]

(e*(e*Cos[c + d*x])^(7/2))/(2*a*d*(a + a*Sin[c + d*x])^(3/2)) + (7*e^3*(e*Cos[c + d*x])^(3/2))/(4*a^2*d*Sqrt[a
 + a*Sin[c + d*x]]) + (21*e^(9/2)*ArcSinh[Sqrt[e*Cos[c + d*x]]/Sqrt[e]]*Sqrt[1 + Cos[c + d*x]]*Sqrt[a + a*Sin[
c + d*x]])/(4*d*(a^3 + a^3*Cos[c + d*x] + a^3*Sin[c + d*x])) + (21*e^(9/2)*ArcTan[(Sqrt[e]*Sin[c + d*x])/(Sqrt
[e*Cos[c + d*x]]*Sqrt[1 + Cos[c + d*x]])]*Sqrt[1 + Cos[c + d*x]]*Sqrt[a + a*Sin[c + d*x]])/(4*d*(a^3 + a^3*Cos
[c + d*x] + a^3*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.46874, antiderivative size = 261, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {2680, 2686, 2679, 2684, 2775, 203, 2833, 63, 215} \[ \frac{7 e^3 (e \cos (c+d x))^{3/2}}{4 a^2 d \sqrt{a \sin (c+d x)+a}}+\frac{21 e^{9/2} \sqrt{\cos (c+d x)+1} \sqrt{a \sin (c+d x)+a} \tan ^{-1}\left (\frac{\sqrt{e} \sin (c+d x)}{\sqrt{\cos (c+d x)+1} \sqrt{e \cos (c+d x)}}\right )}{4 d \left (a^3 \sin (c+d x)+a^3 \cos (c+d x)+a^3\right )}+\frac{21 e^{9/2} \sqrt{\cos (c+d x)+1} \sqrt{a \sin (c+d x)+a} \sinh ^{-1}\left (\frac{\sqrt{e \cos (c+d x)}}{\sqrt{e}}\right )}{4 d \left (a^3 \sin (c+d x)+a^3 \cos (c+d x)+a^3\right )}+\frac{e (e \cos (c+d x))^{7/2}}{2 a d (a \sin (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(e*Cos[c + d*x])^(9/2)/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

(e*(e*Cos[c + d*x])^(7/2))/(2*a*d*(a + a*Sin[c + d*x])^(3/2)) + (7*e^3*(e*Cos[c + d*x])^(3/2))/(4*a^2*d*Sqrt[a
 + a*Sin[c + d*x]]) + (21*e^(9/2)*ArcSinh[Sqrt[e*Cos[c + d*x]]/Sqrt[e]]*Sqrt[1 + Cos[c + d*x]]*Sqrt[a + a*Sin[
c + d*x]])/(4*d*(a^3 + a^3*Cos[c + d*x] + a^3*Sin[c + d*x])) + (21*e^(9/2)*ArcTan[(Sqrt[e]*Sin[c + d*x])/(Sqrt
[e*Cos[c + d*x]]*Sqrt[1 + Cos[c + d*x]])]*Sqrt[1 + Cos[c + d*x]]*Sqrt[a + a*Sin[c + d*x]])/(4*d*(a^3 + a^3*Cos
[c + d*x] + a^3*Sin[c + d*x]))

Rule 2680

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(2*g*(
g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(2*m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(2*m +
 p + 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rule 2686

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(-2*b*(
g*Cos[e + f*x])^(p + 1))/(f*g*(2*p - 1)*(a + b*Sin[e + f*x])^(3/2)), x] + Dist[(2*a*(p - 2))/(2*p - 1), Int[(g
*Cos[e + f*x])^p/(a + b*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[p
, 2] && IntegerQ[2*p]

Rule 2679

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*(g*
Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + p)), x] + Dist[(g^2*(p - 1))/(a*(m + p)), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0]
&& LtQ[m, -1] && GtQ[p, 1] && (GtQ[m, -2] || EqQ[2*m + p + 1, 0] || (EqQ[m, -2] && IntegerQ[p])) && NeQ[m + p,
 0] && IntegersQ[2*m, 2*p]

Rule 2684

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(g*Sqrt[
1 + Cos[e + f*x]]*Sqrt[a + b*Sin[e + f*x]])/(a + a*Cos[e + f*x] + b*Sin[e + f*x]), Int[Sqrt[1 + Cos[e + f*x]]/
Sqrt[g*Cos[e + f*x]], x], x] - Dist[(g*Sqrt[1 + Cos[e + f*x]]*Sqrt[a + b*Sin[e + f*x]])/(b + b*Cos[e + f*x] +
a*Sin[e + f*x]), Int[Sin[e + f*x]/(Sqrt[g*Cos[e + f*x]]*Sqrt[1 + Cos[e + f*x]]), x], x] /; FreeQ[{a, b, e, f,
g}, x] && EqQ[a^2 - b^2, 0]

Rule 2775

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*b)/f, Subst[Int[1/(b + d*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])
], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 2833

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d*x)/b)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{(e \cos (c+d x))^{9/2}}{(a+a \sin (c+d x))^{5/2}} \, dx &=\frac{4 e (e \cos (c+d x))^{7/2}}{a d (a+a \sin (c+d x))^{3/2}}+\frac{\left (7 e^2\right ) \int \frac{(e \cos (c+d x))^{5/2}}{\sqrt{a+a \sin (c+d x)}} \, dx}{a^2}\\ &=\frac{e (e \cos (c+d x))^{7/2}}{2 a d (a+a \sin (c+d x))^{3/2}}+\frac{\left (7 e^2\right ) \int \frac{(e \cos (c+d x))^{5/2}}{(a+a \sin (c+d x))^{3/2}} \, dx}{4 a}\\ &=\frac{e (e \cos (c+d x))^{7/2}}{2 a d (a+a \sin (c+d x))^{3/2}}+\frac{7 e^3 (e \cos (c+d x))^{3/2}}{4 a^2 d \sqrt{a+a \sin (c+d x)}}+\frac{\left (21 e^4\right ) \int \frac{\sqrt{e \cos (c+d x)}}{\sqrt{a+a \sin (c+d x)}} \, dx}{8 a^2}\\ &=\frac{e (e \cos (c+d x))^{7/2}}{2 a d (a+a \sin (c+d x))^{3/2}}+\frac{7 e^3 (e \cos (c+d x))^{3/2}}{4 a^2 d \sqrt{a+a \sin (c+d x)}}+\frac{\left (21 e^5 \sqrt{1+\cos (c+d x)} \sqrt{a+a \sin (c+d x)}\right ) \int \frac{\sqrt{1+\cos (c+d x)}}{\sqrt{e \cos (c+d x)}} \, dx}{8 a^2 (a+a \cos (c+d x)+a \sin (c+d x))}-\frac{\left (21 e^5 \sqrt{1+\cos (c+d x)} \sqrt{a+a \sin (c+d x)}\right ) \int \frac{\sin (c+d x)}{\sqrt{e \cos (c+d x)} \sqrt{1+\cos (c+d x)}} \, dx}{8 a^2 (a+a \cos (c+d x)+a \sin (c+d x))}\\ &=\frac{e (e \cos (c+d x))^{7/2}}{2 a d (a+a \sin (c+d x))^{3/2}}+\frac{7 e^3 (e \cos (c+d x))^{3/2}}{4 a^2 d \sqrt{a+a \sin (c+d x)}}+\frac{\left (21 e^5 \sqrt{1+\cos (c+d x)} \sqrt{a+a \sin (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{e x} \sqrt{1+x}} \, dx,x,\cos (c+d x)\right )}{8 a^2 d (a+a \cos (c+d x)+a \sin (c+d x))}-\frac{\left (21 e^5 \sqrt{1+\cos (c+d x)} \sqrt{a+a \sin (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1+e x^2} \, dx,x,-\frac{\sin (c+d x)}{\sqrt{e \cos (c+d x)} \sqrt{1+\cos (c+d x)}}\right )}{4 a^2 d (a+a \cos (c+d x)+a \sin (c+d x))}\\ &=\frac{e (e \cos (c+d x))^{7/2}}{2 a d (a+a \sin (c+d x))^{3/2}}+\frac{7 e^3 (e \cos (c+d x))^{3/2}}{4 a^2 d \sqrt{a+a \sin (c+d x)}}+\frac{21 e^{9/2} \tan ^{-1}\left (\frac{\sqrt{e} \sin (c+d x)}{\sqrt{e \cos (c+d x)} \sqrt{1+\cos (c+d x)}}\right ) \sqrt{1+\cos (c+d x)} \sqrt{a+a \sin (c+d x)}}{4 d \left (a^3+a^3 \cos (c+d x)+a^3 \sin (c+d x)\right )}+\frac{\left (21 e^4 \sqrt{1+\cos (c+d x)} \sqrt{a+a \sin (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+\frac{x^2}{e}}} \, dx,x,\sqrt{e \cos (c+d x)}\right )}{4 a^2 d (a+a \cos (c+d x)+a \sin (c+d x))}\\ &=\frac{e (e \cos (c+d x))^{7/2}}{2 a d (a+a \sin (c+d x))^{3/2}}+\frac{7 e^3 (e \cos (c+d x))^{3/2}}{4 a^2 d \sqrt{a+a \sin (c+d x)}}+\frac{21 e^{9/2} \sinh ^{-1}\left (\frac{\sqrt{e \cos (c+d x)}}{\sqrt{e}}\right ) \sqrt{1+\cos (c+d x)} \sqrt{a+a \sin (c+d x)}}{4 d \left (a^3+a^3 \cos (c+d x)+a^3 \sin (c+d x)\right )}+\frac{21 e^{9/2} \tan ^{-1}\left (\frac{\sqrt{e} \sin (c+d x)}{\sqrt{e \cos (c+d x)} \sqrt{1+\cos (c+d x)}}\right ) \sqrt{1+\cos (c+d x)} \sqrt{a+a \sin (c+d x)}}{4 d \left (a^3+a^3 \cos (c+d x)+a^3 \sin (c+d x)\right )}\\ \end{align*}

Mathematica [C]  time = 0.16791, size = 80, normalized size = 0.31 \[ -\frac{2 \sqrt [4]{2} \sqrt{a (\sin (c+d x)+1)} (e \cos (c+d x))^{11/2} \, _2F_1\left (\frac{3}{4},\frac{11}{4};\frac{15}{4};\frac{1}{2} (1-\sin (c+d x))\right )}{11 a^3 d e (\sin (c+d x)+1)^{13/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Cos[c + d*x])^(9/2)/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

(-2*2^(1/4)*(e*Cos[c + d*x])^(11/2)*Hypergeometric2F1[3/4, 11/4, 15/4, (1 - Sin[c + d*x])/2]*Sqrt[a*(1 + Sin[c
 + d*x])])/(11*a^3*d*e*(1 + Sin[c + d*x])^(13/4))

________________________________________________________________________________________

Maple [A]  time = 0.146, size = 282, normalized size = 1.1 \begin{align*}{\frac{1}{8\,d \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sin \left ( dx+c \right ) + \left ( \cos \left ( dx+c \right ) \right ) ^{3}+2\,\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) -3\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-4\,\sin \left ( dx+c \right ) -2\,\cos \left ( dx+c \right ) +4 \right ) } \left ( e\cos \left ( dx+c \right ) \right ) ^{{\frac{9}{2}}} \left ( 21\,\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\arctan \left ( 1/2\,\sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}} \right ) \sqrt{2}\sin \left ( dx+c \right ) +21\,\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \sqrt{2}\sin \left ( dx+c \right ) +4\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sin \left ( dx+c \right ) -4\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}-22\,\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) -18\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}+22\,\cos \left ( dx+c \right ) \right ) \left ( a \left ( 1+\sin \left ( dx+c \right ) \right ) \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(d*x+c))^(9/2)/(a+a*sin(d*x+c))^(5/2),x)

[Out]

1/8/d*(e*cos(d*x+c))^(9/2)*(21*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*2^(1/2)*(-2*cos(d*x+c)/(1+cos(d
*x+c)))^(1/2))*2^(1/2)*sin(d*x+c)+21*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(
1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c))*2^(1/2)*sin(d*x+c)+4*cos(d*x+c)^2*sin(d*x+c)-4*cos(d*x+c)^3-22*cos
(d*x+c)*sin(d*x+c)-18*cos(d*x+c)^2+22*cos(d*x+c))/(cos(d*x+c)^2*sin(d*x+c)+cos(d*x+c)^3+2*cos(d*x+c)*sin(d*x+c
)-3*cos(d*x+c)^2-4*sin(d*x+c)-2*cos(d*x+c)+4)/(a*(1+sin(d*x+c)))^(5/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (e \cos \left (d x + c\right )\right )^{\frac{9}{2}}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(9/2)/(a+a*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((e*cos(d*x + c))^(9/2)/(a*sin(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(9/2)/(a+a*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))**(9/2)/(a+a*sin(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(9/2)/(a+a*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Timed out